SPOTLIGHTS ...

Total Synthesis

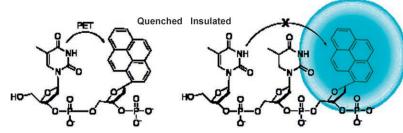
H. Mihara, Y. Sohtome, S. Matsunaga,* M. Shibasaki*

Chiral-Catalyst-Based Convergent Synthesis of HIV Protease Inhibitor GRL-06579A

Chem. Asian J.

DOI: 10.1002/asia.200700330

Metallic mix: GRL-06579A, an HIV-1 protease inhibitor, can be synthesized with the aid of heterobimetallic multifunctional catalysts. The key steps are an ALB-catalyzed Michael reaction and an LLB-catalyzed diastereoselective nitroaldol reaction. ALB=Al-Li-bis(binaphthoxide), LLB=La-Li₃-tris(binaphthoxide), TBS=*tert*-butyl-dimethylsilyl.


Fluorescent Nucleobases

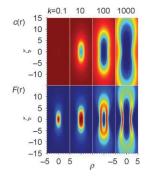
J. N. Wilson, Y. Cho, S. Tan, A. Cuppoletti, E. T. Kool*

Quenching of Fluorescent Nucleobases by Neighboring DNA: The "Insulator" Concept

ChemBioChem

DOI: 10.1002/cbic.200700381

Going out in style: The quenching of the fluorescent nucleobases benzopyrene, perylene, and pyrene by neighboring natural bases is described, as well as a strategy for insulating fluorophores from PET quenching.


Fluorescence Photobleaching

Z. Petrášek,* P. Schwille

Photobleaching in Two-Photon Scanning Fluorescence Correlation Spectroscopy

ChemPhysChem

DOI: 10.1002/cphc.200700579

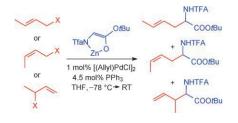
Good agreement: A circularly scanning laser focus studies photobleaching effects as a function of intensity and scan parameters. The observations agree with a theoretical model of photobleaching effects, which takes into account the nonuniform excitation profile, the stationary profile of nonbleached molecules $c(\mathbf{r})$, and the resulting fluorescence profile $F(\mathbf{r})$ (see picture).

Silicon Drug Analogues

R. Tacke,* F. Popp, B. Müller, B. Theis, C. Burschka, A. Hamacher, M. U. Kassack, D. Schepmann,

B. Wünsch, U. Jurva, E. Wellner

Sila-Haloperidol, a Silicon Analogue of the Dopamine (D₂) Receptor Antagonist Haloperidol: Synthesis, Pharmacological Properties, and Metabolic Fate


ChemMedChem

DOI: 10.1002/cmdc.200700205

El = C: Haloperidol (1a) El = Si: Sila-haloperidol (1b) Sila-haloperidol (1b), a silicon analogue of the dopamine (D_2) antagonist haloperidol (1a), was synthesized. As shown in receptor binding studies, sila-haloperidol (1b) shows a higher potency at hD_2 receptors than the parent carbon compound 1a and exhibits higher subtype selectivity at dopamine receptors and at σ receptors as well. The metabolic fates of the C/Si analogues 1a and 1b are totally different.

... ON OUR SISTER JOURNALS

Do you remember? Chelated amino acid ester enolates are excellent nucle-ophiles for palladium-catalyzed allylic alkylations. These enolates react rapidly at $-78\,^{\circ}\text{C}$ and in general without isomerization of π -allyl palladium complexes. Therefore, they are good candidates for mechanistical studies, for example of the memory effect.

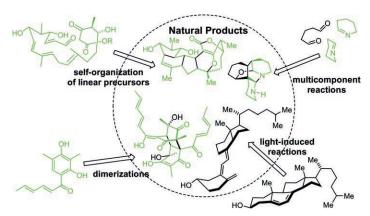
Chelated Enolates

U. Kazmaier,* D. Stolz, K. Krämer, F. L. Zumpe

Influences on the Regioselectivity of Palladium-Catalyzed Allylic Alkylations

Chem. Eur. J.

DOI: 10.1002/chem.200701332

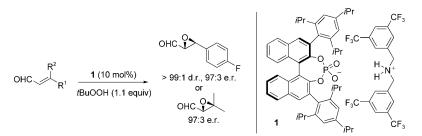

Biomimetic Chemistry

E. Gravel, E. Poupon*

Biogenesis and Biomimetic Chemistry: Can Complex Natural Products Be Assembled Spontaneously?

Eur. J. Org. Chem.

DOI: 10.1002/ejoc.200700331


In some cases, complex structures of natural products can be generated with surprising spontaneity, through selfconstruction mechanisms. Rearrangements of linear molecules, light-induced reactions, dimerizations and multi-component reactions can explain the formation of secondary metabolites through the intrinsic reactivity of their precursors.

Asymmetric Catalysis

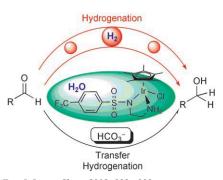
X. Wang, B. List*

Asymmetric Counteranion-Directed Catalysis for the Epoxidation of Enals

Angew. Chem. Int. Ed. DOI: 10.1002/anie.704185

A new mode of chiral anion catalysis: A powerful chiral-counteranion strategy for catalytic asymmetric epoxidations using the newly discovered catalyst 1 has been applied to the epoxidation of α,β -unsaturated aldehydes to-

gether with *tert*-butyl hydroperoxide as the oxidant (see scheme). Remarkably, this system provides the corresponding epoxides in high diastereo- and enantioselectivity for both di- and trisubstituted enals.


Catalysis in Water

X. Wu, C. Corcoran, S. Yang, J. Xiao*

A Versatile Iridium Catalyst for Aldehyde Reduction in Water

ChemSusChem

DOI: 10.1002/cssc.200700086

amine complexes, previously shown to be excellent catalysts for the transfer hydrogenation of aldehydes in water, also catalyze the hydrogenation of aldehydes in water. The reaction is fast and chemoselective, providing a green and efficient method for the reduction of aromatic, aliphatic, heterocyclic, and α,β -unsaturated aldehydes.

A Cat that loves water: Ir-N-tosyldi-